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Fault-propagation folds above thrusts with constant dip 
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Alntract--Previous models of fault-propagation folds have been extended to include the case where folding 
initiates above a thrust ramp of constant dip. The model may be useful in analyses of fold-thrust structures in thin- 
and thick-skinned compressional terrains. It may be most applicable to fault-propagation folds that develop as a 
fault propagates from a thick, massive, brittle unit into a thinly layered, anisotropic unit. 

INTRODUCTION O. 

Is  compressional terrains that are characterized by par- 
allel folding and bedding-plane slip, fold-thrust struc- 
tures may be described geometrically as fault-bend 
folds, fault-propagation folds and detachment folds 
(Suppe 1983, Suppe & Medwedeff 1984, Jamison 1987). 
In many cases, geometric models based on line-length 
and area balancing can facilitate interpretation of these 
structures in the subsurface. 

The purpose of this paper is to extend the geometric 
analyses available for fault-propagation folds (Suppe 
1985, Jamison 1987). A fault-propagation fold develops 
concurrently with and immediately above a propagating 
fault. It is directly associated with an underlying ramp 
segment of a thrust fault, being the macroscopic re- 
sponse of the overlying units to displacement on the 
thrust (e.g. Williams & Chapman 1983). Previous 
models have considered the case where folding initiates 
as a thrust propagates out of a d6collement (Fig. la). 
These models are based on the assumptions of plane 
strain, constant area and bed-length, and parallel, kink- 
style folding. The models provide specific relationships 
between fold and fault geometry. Jamison (1987) 
showed how the assumption of constant bed thickness 
and parallel folding can be relaxed to allow thinning or 
thickening of the frontal fold limb. 

In all previous models, fault-propagation folding 
initiates at a bend in the fault surface, and accordingly, 
all layers in the hanging wall cut by the fault are folded 
through the anticlinal axial surface A (Fig. la). Moti- 
vated by observations of natural and model fault- 
propagation folds (Chester etaL 1986, Chester 1988), we 
extend the earlier geometric analyses to include the case 
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Fig. 1. Geometry of fault-propagation folds. (a) Simple-step fault- 
propagation fold that initiates as a fault propagates out of a d6colle- 
ment (modified after Suppe & Medwedeff 1984). (b) Fault- 
propagation fold that initiates above a fault or fracture of constant dip. 
Note that the fault-propagation fold in (b) between the axial surfaces 
A'  and C is separate from the fault-bend fold (B-B') at the lower ramp 
hinge, whereas in (a) the fault-bend and fault propagation folds are 

combined in a single structure. 
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model are that it can describe a fault-propagation fold 
that is not associated with a fault bend, and in which 
some of the lower layers in the hanging wall cut by the 
fault are not folded through the anticlinal axial surface A 
(Fig. lb). This type of fault-propagation folding is com- 
patible with models describing the propagation of exist- 
ing, isolated thrust fault ramp segments (e.g. Eisenstadt 
& De Paor 1987) and the propagation of thrust faults up- 
section from drcollements at depth (e,g. Rich 1934). 
Application of the model is illustrated with an analysis of 
an exposed mesoscopic fold-thrust structure from the 
Appalachian fold and thrust belt. An example of how 
this model may be used for subsurface analysis is illus- 
trated with a fold above a basement thrust in the Wyom- 
ing Foreland. 
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MODEL GEOMETRY 

The fault-propagation fold consists of two intersecting 
kink-bands A-A'  and C-C' (Fig. 2). Axial surface C is 
fixed with respect to the hanging wall and intersects the 
fault at the fold initiation point (P) in the hanging wall. 
Thrust displacement decreases from .to at the fold initia- 
tion point to zero at the fault tip. The axial surfaces B 
and B' constitute a fault-bend fold associated with the 
ramp-flat intersection. The fault-bend fold is separated 
from the fault-propagation fold by the unfolded region 
between axial surfaces C and B'. The fault-bend fold 
may be analyzed independently (Suppe 1983) and is not 
considered further. The distance from the fault tip to the 
fold initiation point, and the width of the kink-bands A-  
A',  B-B'  and C-C' ,  increase as the magnitude of slip 
increases (Fig. 3). 

The geometry shown in Fig. 2 is based on the assump- 
tions of: (1) plane strain; (2) conservation of cross- 
sectional area; (3) conservation of line-length except in 
the forelimb of the fold; and (4) parallel kink-folding. 
We relax the assumptions of constant line length to allow 
thickening or thinning in the frontal fold limb because 
this is observed in many natural cases (Jamison 1987). 
As shown in Fig. 2, and derived in the Appendix, the 
angles (7t) and (Y2) are related to the interlimb angle (y) 
by 

Y = Yl + Y2, (I) 

and to the thickening of the forelimb (tilt) by 

rf/t = sin yz/sin Y1 (2) 

A ~ ,C' C 
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Fig. 2. Diagram of a fault-propagation fold defining the variables of the 
geometric model. 
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Fig. 3. Geometry of a fault-propagation fold with a = 20 °, 0 = 10 °, 
tilt = 1 and 7 = 56 ° for three magnitudes of fault slip. 

(e.g. Jamison 1987, equation 7). Conservation of area in 
the layer that is both cut by the fault and folded through 
axial surface A is given by 

cot7t - cot a - 2 tan 0 
+ (tf/t)2[cot 72 - cot (20 + 7 - a)] = 0. (3) 

Geometries that satisfy equations (1), (2) and (3) are 
viable. By combining these equations the geometry of 
the fault-propagation fold may be completely specified 
by the ramp dip (a), interlimb angle (y), back limb dip 
(20) and thickening of the frontal fold limb (tilt) accord- 
ing to: 

cot a + 2 tan 0 - cot y - 2(tf/t) csc V 
+ (tf/t) 2 [cot (20 + 7 - a) - cot 71 = 0. (4) 

Assuming that the frontal fold limb thickens uniformly, 
the dip (a*) of axial surfaces A and A' in the unfaulted 
layers is given by 

cot a* = (tf/t) csc (20 + 7) + cot (20 + 7). (5) 

The dip of the frontal fold limb is equivalent to the 
supplement to the sum of the interlimb angle and back 
limb dip (see Appendix, equation A6). 

In this model, the back limb dip (20) is not necessarily 
equal to the ramp dip (a). Thus, for specified ramp and 
back limb dips there exists a family of solutions for 
interlimb angle as a function of the thickening of the 
frontal fold limb (Fig. 4). Similarly, for a specified ramp 
dip and forelimb thickening there is a family of solutions 
for interlimb angle as a function of the back limb dip 
(Fig. 5). For some values of ct, 7 and ~/t, there are two 
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values of 0 that satisfy equation (4), which is illustrated 
graphically by the crossing of curves in Fig. 5. 

For all solutions, the thickness (t) of the layer that is 
both faulted and folded through axial surface A is 
proportional to the fault offset (fo) measured at the 
fold-initiation point (Fig. 2) according to: 

f o / t  = CSC a - ( t f / t )  CSC (20 + 7 - a). (6) 

The left-hand side of equation (6) approaches zero with 
an increase in interlimb angle and ramp dip. Accord- 
ingly, high-angle reverse faults propagate a great dis- 
tance relative to fault offset and show less associated 
folding than low-angle thrusts. 

Although the model provides viable solutions for 
many ramp dips and interlimb angles, not all solutions 
are geologically reasonable. For example, low-angle 
thrusts with large back limb dips require folds verging 
opposite to the thrust. Generally, admissible solutions 
are those for ramps and back limbs dipping less than 
approximately 45* and interlimb angles that are less than 
approximately 120 ° . 

COMPARISON WITH PREVIOUS MODELS 

The previous simple-step fault-propagation fold 
models are based on the assumption that folding initiates 
as a propagating fault steps up out of a drcollement into 
a ramp orientation; the fold nucleating at the step 
(Suppe & Medwedeff 1984, Suppe 1985, Jamison 1987). 
These models are special cases of the present model. 
The generalized model presented here assumes folding 
also can nucleate as an existing fault ramp (or fracture) is 
extended in the same plane (Fig. lb). Thus the model 
allows for the presence of faulted beds in the hanging 
wall below the fold initiation point and a back limb dip 
that is different from the ramp dip. The model does not 

require that the ramp root into a flat, and therefore may 
be compatible with the model for ramp development 
proposed by Eisenstadt & De Paor (1987). In their 
model thrust ramps form first in the most competent 
layers, and then are linked by upward and downward 
propagation to form the ramp-flat geometry. Extension 
of these early-formed ramps into structural lithie units 
with better layering or less competence could lead to the 
fault-propagation fold geometry described by the model 
presented here. Such a kinematic development and 
resultant geometry have been produced in rock model 
experiments of fold-thrust structures (Chester et  al.  
1986). In the experiments, fault-propagation folding 
initiates as a pre-existing ramp propagates up section 
across a mechanical layer boundary from a relatively 
thick, strong, brittle unit into a thinly-layered, mechan- 
ically anisotropic or ductile unit. 

If the fold initiation point (P) in the hanging wall 
originates at the base of the ramp and the back limb dip 
is equal to the ramp dip (20 = a), the axial surfaces B' 
and C (Fig. 2) are not required and the general model 
reduces to the simple-step fault-propagation fold de- 
scribed by Suppe & Medwedeff (1984) (Fig. la). For the 
case with no thickening or thinning of the forelimb 
( t f / t  = 1), equation (2) requires )'l = 3/2, and the geo- 
metric relation (4) defining the fault-propagation fold 
reduces to 

(1 + 2 cos 2 Yt)/sin (2yl) = (2 - cos a)/sin a (7) 

(see Appendix). In this case there is a unique relation- 
ship between ramp dip and interlimb angle (fig. 9-50 of 
Suppe 1985). If thickness changes are allowed in the 
forelimb of a simple-step fault-propagation fold, 
equation (4) becomes 

cot y - 2 cot y~ + (2 - cos a)/sin a = 0 (8) 
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Fig. 4. (a) Curves relating ramp angle (a) to fold interlimb angle (7) for different amounts of forelimb thickening or thinning 
(tf/t) and for 0 -- 10L Geometry of fault-propagation folds for a -- 25 °, 0 -- 10 ° and forelimb thickening of (b) tf/t = 0.75. 

(c) tf/t -- 1.0 and (d) tf/t = 1.25. 
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Fig. 5. (a) Curves relating ramp angle (a) to fold interlimb angle (7) for different 0 and for different forelimb thickening 
(tf/t) of 0.75, 1,0 and 1.25. Curves for 0 = 2* show solutions for very shallow but non-zero back limb dips. Geometry of 

fault-propagation folds for a = 25 °. tf/t = 1.0, and (b) 0 = 2 °, (c) 0 = I0 ° and (d) 0 = 20*. 

as derived by Jamison (1987, equation 11) (see Appen- 
dix). 

NATURAL EXAMPLES 

Two examples of fault-cored folds are presented to 
illustrate the application of this model. The first example 
is a mesoscopic fault-propagation fold in which both the 
fold and fault are exposed. This offers a type example of 
the geometry described in this paper, i.e. a fault- 
propagation fold that developed above a thrust of con- 
stant dip. The second example is a macroscopic fold over 
a thrust in crystalline basement. This latter example is 
used to illustrate the application of the model to subsur- 
face analysis where data are limited. 

Mesoscopic example 

The fault-propagation fold is located in the Cumber- 
land Plateau d6collement zone, and is exposed in a large 
road cut along Route 8 near Dunlap, Tennessee. The 
entire road cut has been mapped by Harris & Milici 
(1977), and the fold and surrounding structure is pre- 
sented in a down-plunge projection by Wojtal (1986). 
The fold occurs in interbedded sandstones, siltstones 
and shales of the Gizzard Group. Several photographs 
of the fold have been published (Serra 1977, Suppe 1985, 
Boyer 1986), and Serra (1977, 1978) presents a detailed 
tracing of the fault-fold structure from a composite of 
serial photographs. 

The road cut crosses the structure oblique to the 
transport direction. We have constructed a down-plunge 
projection of the fold based on the tracing of Serra 
(1978) and our field measurements that define the 
dimension and orientation of the outcrop and structural 
elements (Fig. 6a). There is some distortion inherent in a 

tracing from serial photographs, but the accuracy is 
sufficient for the purposes of this analysis. 

The fault makes an angle with bedding of approxi- 
mately 17.5 ° in the footwall and hanging wall below the 
fold initiation point (Fig. 6a). In our projection the fault 
tip is located where truncation and offset of bedding 
along the fault is negligible. The fault may continue 
beyond this point parallel to bedding and define an 
upper fiat. However, there is no evidence for large 
transport of the hanging wall along a fiat, nor any 
indication of the relative timing of the formation of the 
fold and upper fiat. An estimate of the magnitude of slip 
on the main fault below the fold may be obtained from 
the offset of a bedding horizon identified by small 
sandstone lenses (Fig. 6a). The down-plunge projection 
of Wojtal (1986) indicates that the thrust ramp extends 
at nearly the same orientation to lower structural levels 
before merging with a bedding-parallel d6collement. 

The fact that the fold occurs above a thrust, that the 
displacement on the thrust decreases upwards in the 
folded region, and that the footwall is not folded. 
suggests this fold may be described as a fault- 
propagation fold. However, the structure cannot be 
described by previous geometric models of a simple-step 
fault-propagation fold out of a d~collement because the 
fault has a relatively uniform dip in the vicinity of the 
fold initiation point, the bedding cut-off angles of the 
hanging wall and footwall below the folded layers are the 
same, and the lower layers of the hanging wall are not 
folded (Fig. 1). These are the essential features of the 
geometric model presented here (Fig. 2). 

We fit the geometry of the fault-fold structure with 
the geometric model by using a ramp dip (a) of 17.5 ° 
(relative to bedding) and varying the other parameters. 
The best-fit is obtained for a back limb dip (20) of 25 °, 
interlimb angle (7) of 97 °, and thickening of the forelimb 
(tf/t) of 1.67 (Fig. 6b). It is clear that the geometric 
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model does not fit the natural structure exactly. This is 
because several aspects of the natural structure are not 
treated in the geometric model. In particular, the rock 
unit is not thinly- or uniformly-layered with respect to 
the size of the structure, it does not deform solely by 
distributed layer-parallel shear or form perfect kink-fold 
hinge geometries at this scale, there is a minor thicken- 
ing by faulting and folding in the hanging wall, and the 
thickening in the forelimb of the fold is considerably 
greater in the shale than in the sandstone beds. In 
addition, the structure varies along strike which suggests 
that the model solution will also vary along strike. 
Nevertheless, the overall geometry of the fold-thrust 
structure, including the magnitude of offset along the 
fault at the fold initiation point (fo), is described satisfac- 
torily by this geometric model and not by the previous 
models (Fig. 6b). This result suggests that the geometric 
model may be useful for the analysis of similar fault- 
propagation fold structures in the subsurface where data 
are more limited. 

M a c r o s c o p i c  e x a m p l e  

The Pitchfork Anticline is a Laramide fold in Paleo- 
zoic rocks of the Bighorn Basin, Wyoming. The geom- 
etry of this fold in the subsurface is constrained by 

surface mapping, well and seismic data (Fig. 7a). For 
this analysis, thicknesses of the stratigraphic units, bed- 
ding dips and the location of contacts, small faults and 
fold axes are taken from the surface and well data 
provided by Peterson (1983). A seismic reflection pro- 
file across the structure suggests that the Precambrian 
basement surface has a uniform regional dip of 7 ° to the 
east, except directly below the fold where it is offset 
along a relatively discrete fault zone (R. R. Gries per- 
sonal communication, 1989). The seismic and surface 
data suggest that the uplift of the basement surface along 
this fault is of the order of 550 m. 

These structural data suggest that the Pitchfork Anti- 
cline formed by shortening of the sedimentary rocks 
above a basement thrust, but are insufficient to define 
the fold geometry in detail or the attitude of the fault 
(Fig. 7a). The rock units involved in the deformation 
may be described mechanically as an isotropic, brittle 
unit (basement) overlain by a relatively thinly layered, 
anisotropic unit (sedimentary cover). We consider the 
possibility that the Pitchfork Anticline is a fault- 
propagation fold in which the folding nucleated at the 
mechanical boundary between the basement and sedi- 
mentary cover, and that the subsurface geometry can be 
constrained by the geometric model. 

The best-fit to the available structural data is given by 
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Fig. 6. (a) Down-plunge projection of the fault-propagation fold in the Cumberland Plateau d~collement zone, Tennessee, 
based on field measurements and a tracing of serial photographs by Serra (1978). Thin lines are bedding planes, thick lines 
are faults and stippling represents sandstone beds. The boundaries of the exposure are indicated. (b) The best-fit of the 

model to the fault-fold structure is given by a = 17.5 °, 20 = 25 °, y = 97* and thickening ( t f / t )  of 1.67. 
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Fig. 7. (a) Structural data for the Pitchfork Anticline, Bighorn Basin, Wyoming. Surface and well data are taken from 
Peterson (1983). Seismic reflection data are used to constrain the regional dip and magnitude of fault offset (R. R. Gries 
personal communication, 1989). (b) Structural interpretation of the fold based on the geometric model. The sedimentary 
bedding horizons are represented approximately with straight lines and a kink-fold geometry. The best-fit is given by 

), -- 1117, 20 = 24*, tz = 38* and thickening (4fit) of 1.13. 

forelimb thickening ( t f / t )  of 1.13, an interlimb angle of 
110", back limb dip of 31" (0 = 12") and a fault dip of 45 ° 
(a = 38", Fig. 7b). As with the previous example, the 
model describes the overall geometry of the structure 
and satisfies the structural data adequately, but it does 
not predict minor deformational features within the 
structure such as the smaller fault known to exist in the 
core of the fold (Fig. 7a). 

The model does not indicate that the fold initiation 
point is located at the contact between the basement and 
sedimentary rock, but instead suggests that some of the 
basement in the Pitchfork structure has undergone kink- 
style folding. Although this style of deformation is 
present in some Laramide structures, it is not ubiquitous 
(e.g. Steams 1971, Chase et al. 1989). Therefore it may 
be appropriate to supplement this analysis of the Pitch- 
fork Anticline using other models for basement fault 
geometries such as that described by Narr & Suppe 
(1989) or to add minor deformational features charac- 
teristic of basement-cored folds of the Wyoming fore- 
land (e.g. Stearns 1971, Brown 1989). Nevertheless, this 
example demonstrates that the geometric model can 

provide a first step in the analysis of a subsurface 
fault-propagation fold structure by defining a fault 
orientation and an overall fold geometry that is 
balanced. 

SUMMARY AND CONCLUSIONS 

We have extended geometric models of fault- 
propagation folds to include the case of folding during 
propagation of a thrust ramp without a change in fault 
orientation. The model defines relationships between 
intedimb angle and fault dip for various forelimb thick- 
ness variations and back limb dips. The simple-step (out 
of a d6collement) fault.propagation fold is a specific case 
of the present model. 

We show natural examples of folds that may be 
described by the present model. Even so, the geometric 
model cannot be applied indiscriminately. The appli- 
cation requires evaluation of the assumptions of the 
geometric analysis in light of each natural case. 

The present model may be particularly well-suited for 
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t h e  ana lys i s  o f  f a u l t - p r o p a g a t i o n  fo lds  tha t  i n i t i a t e  as a 

fau l t  e n c o u n t e r s  a c h a n g e  in m e c h a n i c a l  s t r a t i g r a p h y ,  

such  as a c o n t a c t  b e t w e e n  a m a s s i v e ,  i s o t r o p i c ,  b r i t t l e  

un i t ,  a n d  a t h in ly  l a y e r e d ,  a n i s o t r o p i c  un i t .  I n  th is  s ense ,  

it m a y  bes t  d e s c r i b e  fo lds  w i t h i n  t h i n - s k i n n e d  t h r u s t  

be l t s  h a v i n g  c o n t r a s t i n g  s t ruc tu ra l  l i th ic  un i t s ,  o r  m e s o -  

s cop ic  a n d  m a c r o s c o p i c  fo lds  in s e d i m e n t a r y  r o c k  a b o v e  

b a s e m e n t  th rus t s .  
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A P P E N D I X  

Derivation of model equations 
Equation (2) is derived by expressing the length of line SP in terms of 

Yl and 72 (Fig. A1):  

SP = ~/sin 72 = t/sin 71. (AI) 

Conservation of area of the faulted and folded layer of the fault- 
propagation fold is derived by equating the area of three triangles (Fig. 
A1): 

APQR = APQS + APST. (A2) 

The area of each triangle is given by 

APQR = t 2 (cot a + tan 0)/2 (A3) 
APQS = APQ'S - ApQ'Q = t z (cot Yx - tan 0)/2 (A4) 

and 

APST = APT'S - APT'T = tf 2 (cot }'2 --  COt ( 1 8 0  --  a --  ~ ) ) / 2 ,  ( A S )  

where the dip of the forelimb (~) is related to the interlimb angle and 
the dip of the back limb according to 

= (180 - 20 - 7). (A6) 

Substituting equations (A3)-(A6) into (A2) and rearranging gives 
equation (3). 

The equations defining the geometric relations for the fault- 
propagation fold are derived by combining equations (1) and (2) and 
expanding the terms sin (7 - 71) and sin (y - Y2) with the identity 

sin (X - Y) = sin X cos Y - cos X sin Y, (AT) 

to yield 

cot Yn = (tflt + cos y)/sin 7 (Ag) 

and 

cot 72 = ( t / r f  + cos },)/sin y. (A9) 

Equation (4) follows from substituting (A8) and (A9) into equation 
(3). For the simple-step fault propagation fold, the relation 20 = a is 
substituted into equation (4) and combined with (A8) to yield 

cot a + 2 tan (o32) - 2 cot 71 + cot 7 = 0. (A10) 

Equation (8) is derived from (A10) using the identities 

cos (0./2) = (sin a)/2 sin (a/2) (Al l )  

and 

sin 2 (a/2) = (1 - cos a)/2. (AI2) 

Equation (7) may be derived from equation (8) with the relation 
7 = 271, which describes the case of no thickening of the forelimb, and 
by substituting the identities 

cos (2~,z) -- 2 cos 2 ~', - 1 (AI3) 

and 

S,-,, 

t 

R'---:" ........ Q 

....... -'I: t 
T 

Fig. A1. Diagrams defining the areas of triangles and angles used to 
derive the geometric relations for the faulted and folded layers of the 

fault-propagation fold. 
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sin ~'i = (sin 2yt)/2 cos Yr. (AI4) 

Assuming that thickening in the forelimb is uniform, the dips of the 
axial surfaces A and A', as expressed in equation (5), are derived by 
rewriting equation (2) for the layers that are folded but not cut by the 
fault: 

(t/It) sin a* = sin (180 - a* - ~) = sin (20 + y - a*). (AI5) 

Equation (5) follows from equation (AI5) by rearranging terms and 
expanding the term sin (20 + ~, - a*) with the identity (A7). 

The ratio of fault offset to thickness of the faulted layer (/o/t) in 
equation (6) is derived by rearranging the terms in the following 
expression for the length of the fault segment TP (Fig. AI): 

TP = t/sin a -)c o = t//sin (180 - a - ~). (AI6) 


